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Measurement of Charged and Neutral Currente�p Deep Inelastic Scattering Cross Sections atHigh Q2ZEUS Collaboration
AbstractDeep inelastic e�p scattering has been studied in both the charged-current (CC) andneutral-current (NC) reactions at momentum transfers squared, Q2, between 400 GeV2and the kinematic limit of 87500 GeV2 using the ZEUS detector at the HERA ep collider.The CC and NC total cross sections, the NC to CC cross section ratio, and the di�erentialcross sections, d�=dQ2, are presented. For Q2 ' M2W , where MW is the mass of theW boson, the CC and NC cross sections have comparable magnitudes, demonstratingthe equal strengths of the weak and electromagnetic interactions at high Q2. The Q2dependence of the CC cross section determines the mass term in the CC propagator tobe MW = 76� 16� 13 GeV.
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1 IntroductionLepton-nucleon scattering is an important technique for studying the constituents of the nucleonand their interactions. In the Standard Model[1], electron-proton (ep) scattering occurs via theexchange of gauge bosons (
, Z0, W�). At long wavelengths (small momentum transfers),interactions of the massless photon dominate over the exchange of the heavy gauge bosons.However, at the ep storage ring HERA, for the �rst time, scattering can be observed at suf-�ciently short wavelengths (large momentum transfers) that the `weak' and `electromagnetic'scattering cross sections have comparable magnitudes.Neglecting longitudinal structure functions and radiative corrections, the di�erential cross sec-tion for deep inelastic scattering (DIS) with unpolarized e�p beams can be expressed as[2]:d2�dxdQ2 = 2��2xQ4 hf1 + (1� y)2gF2 + f1� (1� y)2gxF3iwhere the Fi(x;Q2) functions describe the proton structure and couplings. In this equation, Q2is the negative square of the four-momentum transfer, y is the fractional energy transfer fromthe lepton in the proton rest frame, � is the electromagnetic �ne-structure constant and x inthe quark-parton model is the momentum fraction of the proton carried by the quark struck bythe exchanged boson. These variables are related by Q2 = sxy, where ps is the center-of-massenergy. The Fi can be expressed as sums over quark 
avors, f , of the quark densities insidethe proton, qf (x;Q2), weighted according to the gauge structure of the scattering amplitudes.For the neutral-current (NC) reaction, e�p! e�X, mediated by 
 and Z0 exchange, they canbe written as: FNC2 =Xf q+f he2f + 2vevfefPZ + (v2e + a2e)(v2f + a2f)P2ZixFNC3 =Xf q�f h�2aeafefPZ + (4veaevfaf )P2Ziwhere q�f = fxqf(x;Q2)� x�qf(x;Q2)g, ae and ve are the axial- and vector-couplings of the e�to the Z0, and af and vf are the analogous couplings for a quark of 
avor f which has electriccharge ef [1]. PZ is the ratio of Z0-to-photon propagators, given by PZ = Q2=(Q2+M2Z), whereMZ is the mass of the Z boson.For charged-current (CC) scattering, e�p ! �eX, in which W� bosons are exchanged, thefunctions are: FCC2 = xP2W8 sin4 �W Xk;m hjVkmj2uk + jVmkj2 �dmixFCC3 = xP2W8 sin4 �W Xk;m hjVkmj2uk � jVmkj2 �dmi1



where k and m are the generation indices of up-type quarks, uk(x;Q2), and down-type anti-quarks, �dm(x;Q2), V is the Cabibbo-Kobayashi-Maskawa quark mixing matrix, �W is the weakmixing angle, and PW = Q2=(Q2+M2W ). At lowest order, GFM2W = ��=p2 sin2 �W , where GFis the Fermi constant.In 1993, HERA collided 26.7 GeV e� with 820 GeV p, giving ps = 296 GeV. Due to this highcenter-of-mass energy, DIS can be investigated at much higher Q2 at HERA than in existing�xed target experiments. The predicted DIS cross sections at �xed x over a large Q2 rangedepend both on the electroweak theory for the propagators and couplings and on QuantumChromodynamics (QCD) for the parton density evolution. The structure functions, F2, havebeen measured[3] in ep and �p scattering up to Q2 � 5(150) GeV2 for x = 0:03(0:3). Theparton density distributions[4, 5] inferred from those measurements were extrapolated to ourQ2 region using the next-to-leading-order QCD evolution equations[6]. At x of 0.03 (0.3), theup-quark density is predicted to change by 21% (�39%) as Q2 increases from 5 GeV2 to 16000GeV2. In contrast, the NC propagator varies by 7 orders of magnitude over the same Q2interval.This paper reports measurements of integrated and di�erential cross sections, d�=dQ2, for NCand CC DIS with Q2 > 400 GeV2 using a luminosity of 0:540 � 0:016 pb�1. ZEUS[7] andH1[8] have previously reported on NC DIS cross section measurements at lower Q2. The H1experiment has also measured the CC total cross section[9] and demonstrated that at large Q2the mass in the CC propagator is �nite.2 The ZEUS detector and triggerZEUS[10] is a multipurpose, magnetic detector, designed especially to measure DIS. Chargedparticles are tracked by drift chambers operating in an axial magnetic �eld of 1.43 T. The super-conducting solenoid is surrounded by a compensating uranium-scintillator calorimeter (CAL)with an electromagnetic (hadronic) energy resolution of 18%=qE(GeV) (35%=qE(GeV)) anda subnanosecond time resolution. The CAL covers the angular range between 2:2� and 176:5�.ZEUS used a right-handed coordinate system, centered at the nominal interaction point (z = 0),de�ned with positive z along the direction of the proton beam and positive y upwards. TheCAL is segmented in depth into electromagnetic and hadronic sections, with a total thickness of4 to 7 interaction lengths. Surrounding the CAL is an iron magnetic return yoke instrumentedfor muon detection. For this analysis, the muon detectors were used to identify cosmic-rayinduced triggers. The luminosity is measured by the rate of high-energy photons from thereaction ep ! ep
 detected in a lead-scintillator calorimeter located z = �107 m from theinteraction region.Data were collected with a three-level trigger. The �rst-level trigger was based on electro-magnetic energy, transverse energy and total energy deposits in the CAL[7]. The thresholds,between 2 and 15 GeV, were well below the o�ine selection cuts. The second-level triggerrejected p-gas events (proton interactions with residual gas in the beam pipe upstream of thedetector) recognized by CAL energy deposited at times early relative to that of the ep cross-ing. The third-level trigger selected events as NC DIS candidates if E � Pz exceeded 25 GeV,where E and Pz are the summed energy and z-component of the momentum measured in thecalorimeter. If no energy escapes through the rear beam hole, E � Pz � 2Ee where Ee is the2



electron beam energy. Events were selected as CC DIS candidates if 6Pt, the absolute value ofthe missing transverse momentum measured by the calorimeter, exceeded 9 GeV, and therewas either more than 10 GeV deposited in the forward part of CAL or at least one trackreconstructed in the drift chambers.3 Kinematic Reconstruction and Event SimulationAs the ZEUS detector is nearly hermetic, it is possible to reconstruct the kinematic variablesx and Q2 for NC DIS using di�erent combinations of the angles and energies of the scatteredlepton and hadronic system[7]. Three methods were relevant to this analysis. The electron (e)method uses E 0e and �e, the energy and polar angle of the scattered electron. The hadronic,or Jacquet-Blondel (JB)[11], method reconstructs y and Q2 as yJB = (Eh � Pz;h)=(2Ee) andQ2JB = P 2t;h=(1�yJB), where Eh, Pz;h and Pt;h are the energy, the z�component of momentum,and the transverse momentum, of the hadronic system. The double angle (DA) method uses �eand 
h, the polar angle of the struck quark which is given by cos 
h = (P 2t;h�(2EeyJB)2)=(P 2t;h+(2EeyJB)2). The DA method, which measures Q2 with small bias and good resolution, was usedto reconstruct NC events[7]. For CC DIS, the hadronic (JB) method was used.The acceptances and measurement resolutions for signal and background events were deter-mined using Monte Carlo methods. Simulated CC and NC DIS events, generated usingLEPTO[12] interfaced to HERACLES[13] by DJANGO[14], were passed through a GEANT[15]based detector simulation, and subsequently analyzed with the same reconstruction and o�ineselection procedures as the data. The calculated e�ciencies and acceptances were found to havenegligible dependences on either the model of the hadronic �nal state [12, 16] or the protonparton density parametrizations[4] used in the simulation.4 NC selection and analysisThe o�ine NC DIS event selection required an electron candidate with E 0e > 10 GeV in thecalorimeter and E � Pz > 35 GeV. To reject backgrounds from photoproduction events witha fake electron (mostly �0's at small polar angles) the electron candidate was required to havea matching track and to satisfy ye < 0:95. Cosmic-ray triggers were rejected by requiring6Pt=pEt < 2 GeV 12 . A �nal cut required Q2, as reconstructed by the DA and e methods,to be consistent: 0:7 < Q2e=Q2DA < 1:2. After these selections, 436 events with Q2DA > 400GeV2 remained. The photoproduction background is less than 2%. Over the full y range of0 < y < 1, more than 85% of all Monte Carlo NC DIS events with Q2 > 400 GeV2 pass allof the above cuts. The spectra of x and Q2 for the data and the Monte Carlo simulation areshown in Figures 1a,b. The agreement is satisfactory in both shape and absolute magnitude.The NC DIS cross sections in �ve bins of Q2 between 400 GeV2 and the kinematic limit at87500 GeV2 are given in Table 1. The cross section was calculated for each bin as �NC =(NNC � �rNC)=(L � ANC) where NNC is the number of NC DIS events reconstructed in the bin,�rNC is the radiative correction, and L is the luminosity. The acceptance for the bin, ANC, wascalculated from the NC DIS Monte Carlo event sample, as the ratio of the number of eventswhich pass all cuts and have the reconstructed Q2DA in the bin to the number of events with the3



true Q2 in the bin. ANC varies between 0.79 and 0.85. HERACLES[13] was used to calculatethe radiative correction factor, �rNC, which was in the range 0.88 to 0.95 and has been appliedto the data in order to obtain Born cross sections.The systematic errors on ANC include: a 4% error assigned to the uncertainty of the calorimeterenergy response; a 3% uncertainty assigned to the e�ciency of the calorimeter-track matchingfor the electron; a 4% error for the e�ciency of the electron �nding algorithm; and a 5% errorin the lowest Q2 bin for the uncertainty in the e�ciency of the Q2e=Q2DA cut.5 CC selection and analysisThe CC DIS events are characterized by a large 6Pt due to the �nal-state neutrino. The 36000triggers for this mode were produced predominantly by upstream p-gas interactions or cosmicrays. The o�ine CC DIS selection required 6Pt > 12 GeV and a vertex, formed from two ormore tracks, within 45 cm of the nominal interaction point. Events with more than 40 tracksnot associated with the vertex were rejected. To reduce the remaining p-gas background,for which the reconstructed transverse energy was concentrated at small polar angles, eventswith 6Ptouter < 0:7 6Pt were rejected, where 6Ptouter is the missing transverse momentum in thecalorimeter excluding the 1:0�1:0 m2 region around the forward beam pipe. The 117 candidatesremaining were mostly cosmic-ray events, including cosmic-ray muons coincident with a p-gasinteraction. Single muons were rejected on the basis of their characteristic spatial distributionof energy deposition in the calorimeter. Additionally, the times of all energy deposits measuredin the calorimeter were required to be consistent with a single ep interaction. Events with tracksegments in three or more muon chambers were also rejected.The events passing all selection criteria were scanned and one cosmic-ray event was removed,leaving 23 events with Q2 > 400 GeV2 in the �nal CC DIS sample. From Monte Carlo simula-tions, we expect fewer than one background event from photoproduction.The hadronic energies in CC events were corrected for energy loss in material between the vertexand the calorimeter with a multiplicative factor which depended on the uncorrected Pt;h andEh � Pz;h. The correction was determined using NC DIS events, for which the hadronic four-momentum can be reconstructed using the DA method. The correction factor varies between1.03 (at small Eh � Pz;h) and 1.22 (at small Pt;h). Figures 1c, d show the reconstructed xand Q2 distributions for CC DIS sample with Q2 > 400 GeV2 compared to the Monte Carlosimulation. Within the limited statistics of the data, the agreement is satisfactory.The CC DIS cross sections, �CC = (NCC ��rCC)=(L�ACC ), are shown in Table 1. The acceptance,ACC , is in the range 0.67 to 0.80, except for the bin at largest Q2 where it is 1:10 due tomigration from lower Q2. Seventy-�ve percent of Monte Carlo CC DIS events generated withQ2 > 400 GeV2 pass all of the selection cuts. The systematic errors on ACC include: a 5%estimated uncertainty from the dependence on the 6Pt and the 6Ptouter= 6Pt thresholds; a 5%assigned error on the e�ciency to reconstruct a vertex with two tracks; an 8% error in thelowest Q2 bin due to the calorimeter energy scale; and a 9% (20%) error on the lower four bins(highest Q2 bin) due to uncertainties in the hadronic energy correction. A radiative correctionfactor, �rCC , in the range 1.02 to 1.03 has been applied to the visible cross section in each binin order to report a Born cross section. 4



6 ConclusionsThe di�erential Born cross sections d�=dQ2 for both NC and CC scattering are shown in Figure2. The measured cross sections agree with the Standard Model predictions. The ratios of theNC to CC total cross sections for Q2 > Q2min are listed in Table 1. From the lowest bin in Q2to the highest (for which Q2 ' M2W ), the ratio of d�NC=dQ2 to d�CC=dQ2 decreases by twoorders of magnitude to around unity, thus demonstrating the equal strengths of the weak andelectromagnetic forces at high Q2.The rapid fall of the NC cross section with increasing Q2 is mainly due to the massless photonpropagator, as can be seen from the contribution to the NC cross section from photon exchangeonly, �
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Q2min; Q2max( GeV2) 400; 1000 1000; 2500 2500; 6250 6250; 15625 15625; 87500NNC 328 86 18 3 1�measNC (pb) 629 �38 � 69 163 �18 � 15 36 �9� 4 5.8 +3:6�3:2 � 0:6 2.0 +2:9�1:6 � 0:3�rNC 0.89 0.88 0.89 0.91 0.95�SMNC (pb) 644 167 41 8.8 1.1�
NC(pb) 636 159 35 5.9 0.6NCC 2 7 5 7 2�measCC (pb) 5.8 +4:6�3:8 � 0:9 16.8 +6:7�6:1 � 2:3 12.3 +5:8�5:3 � 1:7 16.8 +6:7�6:1 � 2:2 3.4 +2:7�2:1 � 0:8�rCC 1.02 1.03 1.03 1.03 1.02�SMCC (pb) 13.3 17.1 15.9 8.0 1.6�MW!1CC (pb) 17.5 28.3 41.8 46.0 21.2�NC(Q2 > Q2min) 837 � 100 209 � 27 46 � 12 8:0 � 4:1 2:0� 1:7�CC(Q2 > Q2min) 57 � 20 50 � 13 34 � 10 21 � 3:1 3:4� 2:7R ��NC�CC �Q2>Q2min 14:7+3:4�3:2 4:2+1:3�0:9 1:4+0:6�0:4 0:4+0:3�0:1 0:7+1:0�0:5Table 1: Events observed and integrated Born cross sections for NC and CC DIS. Errorsshown are statistical, followed by systematic (which includes the 3.5% luminosity uncertainty).The Born cross sections were obtained from the visible cross sections by multiplying by theradiative correction factor, �rNC;CC. The Standard Model (SM) cross sections are calculatedwith LEPTO[12] using the MRSD0� parton distributions[4]. The predictions for a photon-onlyNC �
NC, and for an in�nite mass in the CC propagator �MW!1CC , are also shown. The NC toCC cross sections and their ratios, R, are also given for Q2 > Q2min.

7



Figure 1: (a) x for NC events (b) Q2 for NC events (c) x for CC events (d) Q2 for CC events.The points with error bars are ZEUS data. The histograms are the predicted numbers of eventsfrom the absolutely normalized simulation. 8



Figure 2: d�=dQ2 for CC and NC DIS. The points with errors are the data, and the curvesare the Standard Model cross sections. The data are plotted at the average Q2 of the events ineach bin. 9


